Integration of control, manufacturing and enterprise systems

Chris Hamlin, SABIC UK Petrochemicals
Nina Thornhill, Imperial College London

Outline of talk

The broad picture
 ➢ ISA-95
Integration between PCS, MES and ERP
 ➢ General comments
 ➢ Experience from SABIC – the new polyethylene plant on Teesside
Discussion on future research directions
The Broad Picture

“The computer-integrated manufacturing (CIM) pyramid of the 1980s has crumbled to make way for better models for manufacturing information technology in the 2000s.” – Keith Unger, InTech, 03 October 2001

The broad picture – ISA-95

- Planning
- Scheduling
- Optimization
- Advanced process control
- Regulatory control
- Control valves, sensors, hardware
- Enterprise resource planning, ERP
- Manufacturing execution system, MES
- Process control system, PCS

ISA-95
Enterprise Control System Integration

September 3rd 2008
The broad picture – ISA-95

<table>
<thead>
<tr>
<th>ERP</th>
<th>Enterprise Performance Reporting</th>
<th>Human Resource Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand Planning</td>
<td>Supply Chain</td>
<td>Production Planning</td>
</tr>
<tr>
<td>Sales & Distribution</td>
<td>Material Management</td>
<td>Warehouse Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MES</th>
<th>Manufacturing Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduling</td>
<td>Process Optimization</td>
</tr>
<tr>
<td>Asset Monitoring</td>
<td>Production Execution</td>
</tr>
<tr>
<td></td>
<td>Material Management</td>
</tr>
<tr>
<td></td>
<td>Production History</td>
</tr>
<tr>
<td></td>
<td>Quality Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PCS</th>
<th>Process Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-Time Execution</td>
<td>Real-Time SPC</td>
</tr>
<tr>
<td>Real-Time Control</td>
<td>Real-Time Monitoring</td>
</tr>
</tbody>
</table>

Adapted from: Sham Afzalpurkar CEO, Performix Inc., 2006 ASUG Annual Conference

Integration between PCS, MES and ERP
Control systems have evolved to manage the present

- Advanced control uses historic data to make deterministic predictions of the future...
 - ...but only to decide what to do straight away
- (Real-time) optimisation is used to drive to a deterministic ideal for a instant in time
 - Irrespective of the consequence over time
 - Without any regard for inherent uncertainty

- Scheduling is generally about managing deviations and opportunities
 - Establishing the theoretical ideal is the least of the challenges
- Planning is inherently about managing risk and uncertainty
 - The hierarchical translation of planning outcomes inevitably loses all information about the original intent

Leaders in our industry use technology to

- Monitor everything that might be important in real-time
 - Displaying what matters, to those who need to know, when they need to know it, at all levels in the organisation
- Ensure planning, reporting and improvements are driven through a common, coherent information framework
 - No value disappears between the cracks of inconsistency
Business Control Hierarchy

Risk Management
- Coping with an uncertain World
 - Prices & markets
 - Supply and demand uncertainty
 - Plant availability

Agility Management
- Responding to fluctuations and deviations
 - Alternate production and supply routes
 - Spot opportunities
 - Responsiveness & flexibility

Performance Management
- Knowing what’s happening and what’s possible
 - Identifying deviations (in production performance, supply/demand patterns etc)
 - Validation of planning models and assumptions
 - Driving continuous improvement

Conformance Management
- Doing what’s wanted or expected
 - Staying on spec (quality control)
 - Minimising costs (constraint control)
 - Pushing appropriate limits (real-time optimisation)

Conservation Management
- Keeping the process running
 - Basic regulatory control (closed-loop)
 - Conservation of mass and energy

Enterprise resource planning, ERP
Manufacturing execution system, MES
Process control system, PCS

Competitive Advantage......

Formula 1 10-15 years ago
- Technology was primary source of competitive advantage
- Focus on automation
 - Traction control
 - Active suspension
 - Automatic transmission
 - Launch control
 - Intelligent braking
 - Fly-by-wire
„…Requires Technological Advantage…“

Formula 1 today:
- Automation is an enabler
 - No longer differentiates
- Technology remains a source of competitive advantage
 - Emphasis now on real-time decision support
 - No longer need to wait until the end of the race to understand what happened

So what have we done on Teesside?

Risk
- SAP ERP Planning System
- MES
- ERP
- Manufacturing Execution System
- LIMS
- Plant Control
- Process Measurements
- MES
- SAP ERP Planning System
- MES

Performance
- MES
- ERP
- Manufacturing Execution System
- LIMS
- Plant Control
- Process Measurements
- MES
- SAP ERP Planning System
- MES

Agility
- MES
- ERP
- Manufacturing Execution System
- LIMS
- Plant Control
- Process Measurements
- MES
- SAP ERP Planning System
- MES

Conformance
- MES
- ERP
- Manufacturing Execution System
- LIMS
- Plant Control
- Process Measurements
- MES
- SAP ERP Planning System
- MES

Conservation
- MES
- ERP
- Manufacturing Execution System
- LIMS
- Plant Control
- Process Measurements
- MES
- SAP ERP Planning System
- MES
Learning & Challenges

- **Integration of different layers**
 - How to retain the core message, ensure coherence and prevent inconsistency
- **Treatment of time**
 - Immediate and instantaneous at plant level
 - Integral and multi-versioned at business level
- **Fit with existing business models**
 - Comparing apples with apples (consistency vs accuracy)
 - Incremental change across entire business
- **Management of Information**
 - Data structures
 - Visualisation
 - Maintenance

END